COS 423

Problem Set No. 4

Due Wed, April 28th
Spring 2004

Collaboration Allowed

(Half credit if turned

in Mon. May 3)

1. Let
[image: image1.wmf](,)

GVE

=

be a directed graph with two distinguished vertices, a source
[image: image2.wmf]s

 and a sink
[image: image3.wmf],

t

 such that every vertex is on some path from s to t (possibly different for each vertex). A series decomposition of
[image: image4.wmf]G

 is a sequence of vertices
[image: image5.wmf]012

,,,...,

k

ssssst

==

 and a sequence of vertex subsets
[image: image6.wmf]12

,,...,

k

VVV

 such that
(i) Every vertex of
[image: image7.wmf]G

 is either an
[image: image8.wmf]i

s

 for some i or in exactly one of the sets
[image: image9.wmf],

i

VS

-

 that is,
[image: image10.wmf]{

}

01

,,...,

k

Ssss

=

 and the sets
[image: image11.wmf]1

,...,

k

VSVS

--

 partition V.
(ii)
[image: image12.wmf]}

{

1

,

iii

ssV

-

Í

 for each i.
(iii) No edge leads from some
[image: image13.wmf]{

}

to a

iij

VsV

-

 with
[image: image14.wmf].

ij

<

(iv) k is maximum.
(a) Give the asymptotically fastest algorithm you can to find a series decomposition of
[image: image15.wmf]G

. Prove that it is correct, and analyze its asymptotic running time as a function of the numbers n of vertices and m of edges of
[image: image16.wmf]G

.

(b) Assume that the edges of
[image: image17.wmf]G

 have non-negative capacities. Describe how to find a maximum flow from s to t in
[image: image18.wmf]G

 by first computing a series decomposition of
[image: image19.wmf],

G

 then solving a maximum flow problem on each of the subgraphs induced by the vertex sets
[image: image20.wmf],

i

V

 and then combining the resulting maximum flows. Prove that your method is correct.
2. The sketchy notes on Edmond’s general matching algorithm describe the following algorithm, which, given an undirected graph and a matching, finds an augmenting path if one exists.

Start with all vertices unlabeled and all edges unexamined. Repeat steps until finding a blossom, finding an augmenting path, or running out of unlabeled free vertices and unexamined edges incident to even vertices.

Either: Choose an unlabeled free vertex v. Label it [v,even].

Or:
 Choose an unexamined edge {v,w} with v labeled [r,even]. Mark the edge examined.

If w is unlabeled and free, stop: augmenting path found.

If w is unlabeled and matched to x, label w [r,odd] and x [r,even].

If w is labeled [s,even] with
[image: image21.wmf],

rs

¹

 stop: augmenting path found.

If w is labeled [r, even] stop: blossom found.
(*)
On finding a blossom, shrink it and restart.
On finding an augmenting path, expand all blossoms in reverse order of shrinking, adding edges to the augmenting path to keep it an augmenting path after each blossom expansion. Having found an augmenting path in the original graph, switch matched and unmatched edges along it to increase the size of the matching by one.
(a) The trouble with this algorithm is that it can be inefficient when a blossom is found: the work done labeling vertices may have to be redone after the blossom is shrunk. To demonstrate this, construct a class of example graphs with corresponding matchings such that, to find one augmenting path, the algorithm above shrinks
[image: image22.wmf]()

n

W

 blossoms and examines
[image: image23.wmf]()

m

W

 edges
[image: image24.wmf]()

n

W

 times, thus spending
[image: image25.wmf]()

nm

W

 time to find just one augmenting path (if it chooses a bad order of steps).
(b) Consider the following possible way to remove the inefficiency in part (a). Change (*) to the following: (**) On finding a blossom, shrink it to single vertex b. If v was the base of the blossom, labeled [r,even], label b [r,even] (If
[image: image26.wmf],

rv

=

 label b [b,even].). If v was previously matched to u, match b to u in the shrunken graph. For each unexamined edge {x,y} with exactly one end, say x, in the blossom, replace {x,y} by {b,y}. Continue the search for an augmenting path.
Given an example of a graph and a matching such that an augmenting path exists, but the algorithm as modified above will not find it (if it chooses a bad order of steps).

(c) Consider the following alternative way to remove the inefficiency in part (a). Replace each unmatched edge {v,w} by two unmatched arcs, (v,w) and (w,v). Begin with all arcs unexamined. Continue steps until finding an augmenting path, or running out of unlabeled free vertices, or running out of unexamined arcs incident to even vertices. Replace the “or” step by the following: “Choose an unexamined arc (v,w) with v labeled [r,even]. Mark the arc examined.” Replace
[image: image27.wmf]()

*

 by (**) except for each unexamined arc (x,y) with exactly one end in the blossom, replace (x,y) by (b,y) or (x,b), respectively, if x or y, respectively, is in the blossom.
Prove that this algorithm will find an augmenting path if and only if one exists.

3. Given a maximum flow in a flow network describe a linear-time algorithm to find a minimum cut, and prove its correctness and running time bound.

4. (CLRS 34. 1-5) Show that an otherwise polynominal-time algorithm that makes at most a constant number of calls to polynominal-time subroutines runs in polynominal time, but that a polynominal number of calls to polynominal-time subroutines may result in an exponential-time algorithm.
5. (CLRS 34. 5-8) In the half 3-CNF satisfiability problem, we are given a 3-CNF formula ø with n variables and m clauses, where m is even. We wish to determine whether there exists a truth assignment to the variables of ø such that exactly half the clauses evaluate to 0 and exactly half the clasues evaluate to 1. Prove that the half 3-CNF satisfiability problem is NP-complete.
_1143285991.unknown

_1143355626.unknown

_1143439026.unknown

_1143439080.unknown

_1143442204.unknown

_1143439069.unknown

_1143355787.unknown

_1143355979.unknown

_1143357911.unknown

_1143355772.unknown

_1143292378.unknown

_1143353313.unknown

_1143355502.unknown

_1143355551.unknown

_1143353336.unknown

_1143353283.unknown

_1143287502.unknown

_1143285460.unknown

_1143285656.unknown

_1143285476.unknown

_1143285553.unknown

_1143285411.unknown

